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Abstract
We use the procedure of Ohta and Hirota to generate an integrable, coupled
system of discrete equations from the discrete KP equation.

PACS numbers: 02.30.lk, 02.30.-f

1. Introduction

In the early 1990s Ohta and Hirota [1] introduced a procedure for generalizing equations
from the KP hierarchy to produce coupled systems of equations with solutions in the form of
Pfaffians [2]. Like the KP equations that produced them, these ‘Pfaffianized’ coupled equations
are integrable and have soliton solutions. The majority of integrable nonlinear equations can be
written in bilinear form and the solutions of these bilinear equations can usually be expressed
as determinants. Pfaffians have a richer structure than determinants and hence the process
of Pfaffianization can provide new systems of integrable equations with a broader class of
solutions than those having determinantal solutions.

The KP hierarchy in bilinear form [3–5] has solutions in the form of τ -functions. These can
be written as Wronskian or Grammian determinants. Ohta and Hirota replaced the Wronskians
and Grammians in the bilinear equations with Pfaffians. The resulting equations are only
satisfied by the introduction of additional terms.

In their nonlinear form, the equations form a new hierarchy of coupled KP equations.
These resulting equations have a richer structure than the original KP equations. One reason
for this is that Pfaffian bilinear identities contain more terms than the corresponding Wronskian
bilinear identities. A second reason is that the Pfaffianization process introduces new fields
into the equations.

In this paper we extend the method of Pfaffianization to discrete equations. We derive the
Pfaffianized form of the discrete KP (dKP) equation. This generates an integrable, coupled
discrete system of equations.
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2. The discrete KP equation (dKP)

The dKP equation [6,7] is the discrete analogue of the more familiar KP equation. The equation
involves three independent variables all of the same weight and can be written in bilinear form
as

a1(a2 − a3)τ (k1 + a1, k2, k3)τ (k1, k2 + a2, k3 + a3)

+a2(a3 − a1)τ (k1, k2 + a2, k3)τ (k1 + a1, k2, k3 + a3)

+a3(a1 − a2)τ (k1, k2, k3 + a3)τ (k1 + a1, k2 + a2, k3) = 0. (1)

Here a1, a2, a3 are the lattice spacings in the three directions corresponding to k1, k2 and k3, the
three discrete independent variables. There is in fact a whole hierarchy of equations. However,
here we will only concern ourselves with this first equation.

The solutions to this equation have been given in terms of Casorati determinants [7]. These
are a discrete analogue of the Wronskians that solve the corresponding KP equation. Let ϕi
be arbitrary functions of the ki and an integer S satisfying the dispersion relation

�kj ϕi(k1, k2, k3, S) = ϕi(k1, k2, k3, S + 1) j = 1, 2, 3. (2)

Here �k is the backwards difference operator defined by its action on functions of the discrete
variables:

�kνF (kν) = F(kν)− F(kν − aν)

aν
.

Ohta et al [7] showed that the solution of the dKP equation (1) is given by the Casorati
determinant

τ(k1, k2, k3) =

∣∣∣∣∣∣∣∣
ϕ1(k1, k2, k3, 0) ϕ1(k1, k2, k3, 1) · · · ϕ1(k1, k2, k3, N − 1)
ϕ2(k1, k2, k3, 0) ϕ2(k1, k2, k3, 1) · · · ϕ2(k1, k2, k3, N − 1)

...
...

...

ϕN(k1, k2, k3, 0) ϕN(k1, k2, k3, 1) · · · ϕN(k1, k2, k3, N − 1)

∣∣∣∣∣∣∣∣
.

It is convenient to introduce some more compact notation. If we write∣∣∣∣∣S1 k11
k21
k31

, S2 k12
k22
k32

, . . . , SN k1N
k2N
k3N

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
ϕ1(k11, k21, k31, S1) ϕ1(k12, k22, k32, S2) · · · ϕ1(k1N, k2N, k3N, SN)

ϕ2(k11, k21, k31, S1) ϕ2(k12, k22, k32, S2) · · · ϕ2(k1N, k2N, k3N, SN)
...

...
...

ϕN(k11, k21, k31, S1) ϕN(k12, k22, k32, S2) · · · ϕN(k1N, k2N, k3N, SN)

∣∣∣∣∣∣∣∣
then the solution, τ , becomes

τ(k1, k2, k3) =
∣∣∣∣∣0 k1

k2
k3

, 1 k1
k2
k3

, . . . , N − 1 k1
k2
k3

∣∣∣∣∣ .
We can make a further notational simplification by suppressing the indices where the variables
are unshifted to leave

τ = |0, 1, 2, 3, . . . , N − 1|.
We can obtain expressions for the shifted τ by use of the dispersion relation (2). For instance

τ(k1 + a1) = |0, 1, . . . , N − 2, N − 1k1+a1 |
τ(k1 + a1, k2 + a2) = 1

a1 − a2
|0, 1, . . . , N − 3, N − 2k2+a2 , N − 2k1+a1 |
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τ(k1 + a1, k2 + a2, k3 + a3) = 1

(a1 − a2)(a1 − a3)(a2 − a3)

×|0, 1, . . . , N − 4, N − 3k3+a3 , N − 3k2+a2 , N − 3k1+a1 |.
It can be shown that the Casorati determinant is a solution of the dKP by means of a Laplace
expansion of determinants [8]. The details of this proof can be found in [7].

3. Properties of Pfaffians

A Pfaffian is the square root of an even-sized skew-symmetric matrix and consequently the
properties of Pfaffians are closely related to those of determinants. A Pfaffian is written as a
triangular array of elements A = (aij ), where 1 � i < j � n. The Pfaffian of A, pfA, is
defined as follows:

pfA =
| a12 a13 · · · a1n

a23 · · · a2n
. . .

...

an−1n

∣∣∣∣∣∣∣∣
=
∑
σ

sgn(σ ) ai1i2ai3i4 · · · ain−1in

where the summation is taken over all permutations σ =
(

1 2 · · · n

i1 i2 · · · in

)
satisfying

i1 < i2, i3 < i4, . . . , in−1 < in and i1 < i3 < · · · < in−1

and sgn(σ ) = ±1 denotes the parity of the permutation σ . Note that n must be even. For
example, when n = 2 we have pfA = a12 and when n = 4

pfA =
| a12 a13 a14

a23 a24

a34

∣∣∣∣∣ = a12a34 − a13a24 + a14a23.

The aij is taken to be skew-symmetric so that

aji = −aij .
We can introduce a more compact notation by considering a set of labels α1, . . . , αm and

a skew-symmetric pairing ( · , · ). Then we can write

pf(α1, α2, . . . , αm) :=
| (α1, α2) (α1, α3) · · · (α1, αm)

(α2, α3) · · · (α2, αm)
. . .

...

(αm−1, αm)

∣∣∣∣∣∣∣∣
.

For example, we may write pfA = pf(1, 2, . . . , n) where (i, j) := aij .

4. Pfaffianizing the KP equation

Armed with some properties of Pfaffians we shall briefly review the Pfaffianization process
for the KP [1]. In bilinear form the KP equation takes the form [5]

(D4
1 − 4D1D3 + 3D2

2)τ · τ = 0 (3)

where the Di = Dxi are standard Hirota derivatives defined by

Dm
1 D

n
2D

p

3 f · g = (∂x1 − ∂x ′
1
)m(∂x2 − ∂x ′

2
)n(∂x3 − ∂x ′

3
)pf (x1, x2, x3)

×g(x ′
1, x

′
2, x

′
3)
∣∣
x ′

1=x1,x
′
2=x2,x

′
3=x3

.
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The soliton solution to equation (3) takes the form of an N ×N Wronskian determinant

τ =

∣∣∣∣∣∣∣∣∣∣

f1 f
(1)
1 · · · f

(N−1)
1

f2 f
(1)
2 · · · f

(N−1)
2

...
. . .

...

fN f
(1)
N f

(N−1)
N

∣∣∣∣∣∣∣∣∣∣
where the superscript (n) denotes n derivatives with respect to x1. Suppressing explicit
reference to the functions allows us to write this as

τ = (0, 1, 2, 3, . . . , N − 1).

The KP equation in bilinear form can be thought of as a determinantal identity,

(N̂ − 3, N,N + 1)(N̂ − 1)− (N̂ − 3, N − 1, N + 1)(N̂ − 2, N)

+(N̂ − 2, N + 1)(N̂ − 3, N − 1, N) = 0 (4)

where ˆ(M) = (0, 1, 2, . . . ,M). If we now replace our Wronskians with Pfaffians we will
obtain a similar (but not exactly the same) identity

pf(N̂ − 3, N,N + 1)pf(N̂ − 1)− pf(N̂ − 3, N − 1, N + 1)pf(N̂ − 2, N)

+pf(N̂ − 2, N + 1)pf(N̂ − 3, N − 1, N) = pf(N̂ − 3)pf(N̂ + 1).

Here, as is typically the case, the simplest three-term determinantal identity has been replaced
by a four-term Pfaffian identity. The elements in these Pfaffians obey dispersion relations of
the form

∂

∂xn
pf(l, m) = pf(l + n,m) + pf(l, m + n).

This kind of dispersion relation is typical for Pfaffians, and the resulting differential rule for a
Pfaffian is the same as the differential rule for the Wronskian: for example

∂

∂x
pf(m̂− 1) = pf(m̂− 2,m)

∂2

∂x2
pf(m̂− 1) = pf(m̂− 2,m + 1) + pf(m̂− 3,m− 1,m)

as compared with
∂

∂x
(m̂− 1) = (m̂− 2,m)

∂2

∂x2
(m̂− 1) = (m̂− 2,m + 1) + (m̂− 3,m− 1,m)

for the Wronskian.
These Pfaffians no longer satisfy the bilinear form of the KP equation (3), but, instead,

satisfy the equation

(D4
1 − 4D1D3 + 3D2

2)F · F = 24GG̃ (5)

where F = pf(N̂ − 1), G = pf(N̂ + 1) and G̃ = pf(N̂ − 3). This process of Pfaffianization
has introduced two new fields G̃ and G into the system and hence additional equations are
required to close the system. These can be obtained by looking at further Pfaffian identities.
This leads to further bilinear equations

(D3
1 + 2D3 + 3D1D2)G̃ · F = 0 (6)

(D3
1 + 2D3 − 3D1D2)G · F = 0. (7)

These equations (5)–(7) represent the Pfaffianized KP system. In the next section we shall
apply this Pfaffianization process to the dKP equation.
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5. Pfaffianizing the dKP equation

In order to Pfaffianize the dKP we require a Pfaffian with elements satisfying the Pfaffianized
form of the dispersion relation (2). Hence our entries in our Pfaffian are chosen to satisfy

�knpf(i, j) = + pf(i + 1, j) + pf(i, j + 1)− an pf(i + 1, j + 1)

or equivalently

pf(i, j)kn−an = pf(i, j)− an pf(i + 1, j)− an pf(i, j + 1) + a2
n pf(i + 1, j + 1).

In much the same way that the continuous system gives simple expressions for the derivatives
of τ -functions, the above discrete dispersion relation gives simple expressions for the shifted
τ -functions. Thus if we take

τ = τ(k1, k2, k3) = pf(1, 2, 3, . . . , N) N even

together with pf(i, cj ) = aN+1−i
j and pf(ci, cj ) = 0 for i 
= j , then we can write down our

backward-shifted τ functions as Pfaffians with extra rows

τ1 = τ(k1 − a1, k2, k3) = pf(1, . . . , N + 1, c1)

τ2 = τ(k1, k2 − a2, k3) = pf(1, . . . , N + 1, c2)

τ3 = τ(k1, k2, k3 − a3) = pf(1, . . . , N + 1, c3)

τ12 = τ(k1 − a1, k2 − a2, k3) = a1a2

a2 − a1
pf(1, . . . , N + 1, N + 2, c1, c2)

τ13 = τ(k1 − a1, k2, k3 − a3) = a1a3

a3 − a1
pf(1, . . . , N + 1, N + 2, c1, c3)

τ23 = τ(k1, k2 − a2, k3 − a3) = a2a3

a3 − a2
pf(1, . . . , N + 1, N + 2, c2, c3)

τ123 = τ(k1 − a1, k2 − a2, k3 − a3)

= a2
1a

2
2a

2
3

(a2 − a1)(a1 − a3)(a3 − a2)
pf(1, . . . , N + 1, N + 2, N + 3, c1, c2, c3).

Our approach now is to look at Pfaffian identities similar to (but again, not the same as)
the determinant identities used in the dKP. There are two simple Pfaffian bilinear identities.
They take the form

pf(p1, p2, . . . , pn, α, β, γ, δ)pf(p1, p2, . . . , pn)

−pf(p1, p2, . . . , pn, α, β)pf(p1, p2, . . . , pn, γ, δ)

+pf(p1, p2, . . . , pn, α, γ )pf(p1, p2, . . . , pn, β, δ)

−pf(p1, p2, . . . , pn, α, δ)pf(p1, p2, . . . , pn, β, γ ) = 0 (8)

and

pf(p1, p2, . . . , pn, α, β, γ )pf(p1, p2, . . . , pn, δ)

−pf(p1, p2, . . . , pn, α, β, δ)pf(p1, p2, . . . , pn, γ )

+pf(p1, p2, . . . , pn, α, γ, δ)pf(p1, p2, . . . , pn, β)

−pf(p1, p2, . . . , pn, β, γ, δ)pf(p1, p2, . . . , pn, α) = 0. (9)

The first of these requires n to be even and the second n to be odd. Notice that both these
identities have four terms rather than the three terms found in the simplest Jacobi identity for
determinants. In the case of dKP we require the following identity:

pf(1, 2, . . . , N + 1, N + 2, c1, c2)pf(1, 2, . . . , N + 1, c3)

−pf(1, 2, . . . , N + 1, N + 2, c1, c3)pf(1, 2, . . . , N + 1, c2)

+pf(1, 2, . . . , N + 1, N + 2, c2, c3)pf(1, 2, . . . , N + 1, c1)

−pf(1, 2, . . . , N + 1, c1, c2, c3)pf(1, 2, . . . , N + 1, N + 2) = 0 (10)
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obtained from (9). This leads to the bilinear equation

a1(a2 − a3)τ23τ1 − a2(a3 − a1)τ13τ2 + a3(a1 − a2)τ12τ3

+a1a2a3(a1 − a2)(a2 − a3)(a3 − a1)σ̃123σ = 0 (11)

which is the discrete analogue of (5). Here σ, σ̃ are new fields that correspond to G and G̃ in
the Pfaffianized KP equation. The fields σ, σ̃ are also Pfaffians of the form

σ = pf(1, 2, . . . , N + 1, N + 2) σ̃ = pf(1, 2, . . . , N − 2).

The introduction of these two new fields σ and σ̃ means that our system is no longer closed so,
as with the continuous KP equation, we need to look for further identities. The two required
identities are obtained from the remaining Pfaffian bilinear identity (8):

a2a3(a2 − a3)σ1τ23 + a3a1(a3 − a1)σ2τ13 + a1a2(a1 − a2)σ3τ12

+(a1 − a2)(a2 − a3)(a3 − a1)στ123 = 0 (12)

a2a3(a2 − a3)τ1σ̃23 + a3a1(a3 − a1)τ2σ̃13 + a1a2(a1 − a2)τ3σ̃12

+(a1 − a2)(a2 − a3)(a3 − a1)τ σ̃123 = 0. (13)

Thus (11)–(13) represent our Pfaffianized dKP system.
If we wish to consider solutions to this system then we need entries in the Pfaffian that

are compatible with the dispersion relation (5) introduced earlier:

pf(i, j)kn−an = pf(i, j)− an pf(i + 1, j)− an pf(i, j + 1) + a2
n pf(i + 1, j + 1).

Our solution is guided by that of the continuous case [1]. This leads us to express the required
Pfaffian entries in the form

pf(i, j) =
M∑
m=1

[f2m−1(i)f2m(j)− f2m−1(j)f2m(i)]

where the fm satisfy the equations

�knfm(i) = fm(i + 1)

or equivalently

fm(i; kn)− fm(i; kn − an) = anfm(i + 1; kn).
We leave further discussion of these solutions to a later publication in which we will compare
them to solutions of the discrete BKP (dBKP) [9], which also has Pfaffian-type solutions.

6. Discussion and conclusions

In this paper we have applied the technique of Pfaffianization to derive an integrable, coupled
system of discrete equations (11)–(13). These equations depend on the lattice spacings ai . We
can, however, rescale the τ -functions to remove the coefficients in the equations using

τ = [a1(a2 − a3)]
−k2k3 [−a2(a3 − a1)]

−k1k3 [a3(a1 − a2)]
−k1k2τold

where τold are the τ in equations (11)–(13). This rescaling, together with a similar rescaling
for σ and σ̃ , gives us the system

τ1τ23 − τ2τ13 + τ3τ12 = σ σ̃123

σ1τ23 − σ2τ13 + σ3τ12 = στ123

τ1σ̃23 − τ2σ̃13 + τ3σ̃12 = τ σ̃123.
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It is interesting to compare this system with the original dKP equation and with the
dBKP [9, 10]. In rescaled form these are

τ1τ23 − τ2τ13 + τ3τ12 = 0

and

τ1τ23 − τ2τ13 + τ3τ12 = ττ123

respectively. It is clear that the Pfaffianized dKP reduces to the dKP on setting σ or σ̃ equal
to zero. If, however, we set σ and σ̃ equal to τ then we recover the dBKP.
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